Study of the Phytochemical Composition, Antioxidant Properties, and In Vitro Anti-Diabetic Efficacy of Gracilaria bursa-pastoris Extracts

MARINE DRUGS(2023)

引用 3|浏览7
暂无评分
摘要
In this study, a comparison was made of the chemical makeup of different extracts obtained from Gracilaria bursa-pastoris, a type of red seaweed that was gathered from the Nador lagoon situated in the northern part of Morocco. Additionally, their anti-diabetic and antioxidant properties were investigated. The application of GC-MS technology to analyze the fatty acid content of the samples revealed that linoleic acid and eicosenoic acid were the most abundant unsaturated fatty acids across all samples, with palmitic acid and oleic acid following in frequency. The HPLC analysis indicated that ascorbic and kojic acids were the most prevalent phenolic compounds, while apigenin was the most common flavonoid molecule. The aqueous extract exhibited significant levels of polyphenols and flavonoids, registering values of 381.31 & PLUSMN; 0.33 mg GAE/g and 201.80 & PLUSMN; 0.21 mg QE/g, respectively. Furthermore, this particular extract demonstrated a remarkable ability to scavenge DPPH radicals, as evidenced by its IC50 value of 0.17 & PLUSMN; 0.67 mg/mL. In addition, the methanolic extract was found to possess antioxidant properties, as evidenced by its ability to prevent & beta;-carotene discoloration, with an IC50 ranging from 0.062 & PLUSMN; 0.02 mg/mL to 0.070 & PLUSMN; 0.06 mg/mL. In vitro study showed that all extracts significantly inhibited the enzymatic activity of & alpha;-amylase and & alpha;-glucosidase. Finally, molecular docking models were applied to assess the interaction between the primary phytochemicals identified in G. bursa-pastoris extracts and the human pancreatic & alpha;-amylase and & alpha;-glucosidase enzymes. The findings suggest that these extracts contain bioactive substances capable of reducing enzyme activity more effectively than the commercially available drug acarbose.
更多
查看译文
关键词
Gracilaria bursa-pastoris,phenolic compounds,antioxidant activity,anti-diabetic properties,enzyme inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要