谷歌浏览器插件
订阅小程序
在清言上使用

Altered generation pattern of reactive oxygen species triggering DNA and plasma membrane damages to human liver cells treated with arsenite

The Science of the total environment(2023)

引用 0|浏览8
暂无评分
摘要
Human exposure to arsenic via drinking water is one of globally concerned health issues. Oxidative stress is regarded as the denominator of arsenic-inducing toxicities. Therefore, to identify intracellular sources of reactive oxygen species (ROS) could be essential for addressing the detrimental effects of arsenite (iAsIII). In this study, the contributions of different pathways to ROS formation in iAsIII-treated human normal liver (L-02) cells were quantitatively assessed, and then concomitant oxidative impairs were evaluated using metabolomics and lip-idomics approaches. Following iAsIII treatment, NADPH oxidase (NOX) activity and expression levels of p47phox and p67phox were upregulated, and NOX-derived ROS contributed to almost 60.0 % of the total ROS. Moreover, iAsIII also induced mitochondrial superoxide anion and impaired mitochondrial respiratory function of L-02 cells with a decreasing ATP production. The inhibition of NOX activity significantly rescued mitochondrial membrane potential in iAsIII-treated L-02 cells. Purine and glycerophospholipids metabolisms in L-02 cells were disrupted by iAsIII, which might be used to represent DNA and plasma membrane damages, respectively. Our study supported that NOX could be the primary pathway of ROS overproduction and revealed the potential mechanisms of iAsIII toxicity related to oxidative stress.
更多
查看译文
关键词
Arsenic,NADPH oxidase,Mitochondria,DNA oxidative damage,Metabolomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要