Guanidinium cationic covalent organic nanosheets-based anion exchange composite membrane for fuel cells

International Journal of Hydrogen Energy(2023)

引用 1|浏览2
暂无评分
摘要
Covalent organic frameworks (COFs) used for anion exchange membrane fuel cells (AEMFCs) are commonly endowed with ion conductivity by post-synthesis modification. However, this method usually results in uneven distribution of functional groups, low functionalization and severe ion capacity fade. Limited by hydrophobic skeleton and relatively large particle size of COFs, the COFs doping amount of the composite membrane is not high. Here we design and synthesize a series of guanidinium cationic covalent organic nanosheets-based anion exchange composite membranes. The positively charged guanidinium group as a building block can induce COF-DhaTGCl self-exfoliation into a few layered nanosheets through strong interlayer repulsion. Then, the nanosheets were introduced into quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenyl ether) (QPPO). A series of COF-DhaTGCl/PPO composite AEMs was prepared with the highest doping amount of 30 wt% by casting method. The porous structure and repeat cationic guanidinium units on the skeleton will expose ion sites to the target ones, providing faster OH− diffusion kinetics in one-dimensional channels. The OH− conductivity of COF-DhaTGCl/PPO-20 composite membrane can reach 148.65 mS/cm at 80 °C. Meanwhile, the composite membrane also exhibits enhanced mechanical strength and alkaline stability with the maximum stress strength of 37.3 MPa and the residual conductivity of 96.29% after immersion in 2 M NaOH solution at 60 °C for two weeks.
更多
查看译文
关键词
Cationic covalent organic framework,Nanosheets,Anion exchange membrane,Hydroxide conductivity,Fuel cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要