Causal Intervention for Human Trajectory Prediction with Cross Attention Mechanism.
AAAI(2023)
摘要
Human trajectory Prediction (HTP) in complex social environments plays a crucial and fundamental role in artificial intelligence systems. Conventional methods make use of both history behaviors and social interactions to forecast future trajectories. However, we demonstrate that the social environment is a confounder that misleads the model to learn spurious correlations between history and future trajectories. To end this, we first formulate the social environment, history and future trajectory variables into a structural causal model to analyze the causalities among them. Based on causal intervention rather than conventional likelihood, we propose a Social E nvironment AD justment (SEAD) method, to remove the confounding effect of the social environment. The core of our method is implemented by a Social Cross Attention (SCA) module, which is universal, simple and effective. Our method has consistent improvements on ETH-UCY datasets with four baseline methods and achieves competitive performances with existing methods.
更多查看译文
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络