Root litter quality drives the dynamic of native mineral-associated organic carbon in a temperate agricultural soil

PLANT AND SOIL(2023)

引用 0|浏览4
暂无评分
摘要
Background and aims Understanding the fate and residence time of organic matter added to soils, and its effect on native soil organic carbon (SOC) mineralisation is key for developing efficient SOC sequestration strategies. Here, the effect of litter quality, particularly the carbon-to-nitrogen (C:N) ratio, on the dynamics of particulate (POC) and mineral-associated organic carbon (MAOC) were studied. Methods In a two-year incubation experiment, root litter samples of the C4-grass Miscanthus with four different C:N ratios ranging from 50 to 124 were added to a loamy agricultural topsoil. In an additional treatment, ammonium nitrate was added to the C:N 124 litter to match the C:N 50 litter input ratio. Soils were size-fractionated after 6, 12 and 24 months and δ 13 C was measured to determine the proportion of new and native POC and MAOC. Litter quality was further assessed by mid-infrared spectroscopy and compound peak analysis. Results Litter quality strongly affected SOC dynamics, with total SOC losses of 42.5 ± 3.0% in the C:N 50 treatment and 48.9 ± 3.0% in the C:N 124 treatment after 24 months. Largest treatment effects occurred in mineralisation of native MAOC, which was strongly primed by litter addition. The N amendment in the C:N 124 treatment did not alleviate this potential N mining flux. Conclusion Litter quality plays a major role in overall SOC dynamics, and priming for N mining from the MAOC pool could be a dominant mechanism. However, adding N did not compensate for poor litter quality, highlighting the role of litter quality beyond stoichiometric imbalances.
更多
查看译文
关键词
C:N ratio,Soil organic carbon,Incubation,Priming,Nitrogen mining,MAOM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要