Chrome Extension
WeChat Mini Program
Use on ChatGLM

Multi-Receiver Task-Oriented Communications via Multi-Task Deep Learning

2023 IEEE Future Networks World Forum (FNWF)(2023)

Cited 0|Views33
No score
Abstract
This paper studies task-oriented, otherwise known as goal-oriented, communications, in a setting where a transmitter communicates with multiple receivers, each with its own task to complete on a dataset, e.g., images, available at the transmitter. A multi-task deep learning approach that involves training a common encoder at the transmitter and individual decoders at the receivers is presented for joint optimization of completing multiple tasks and communicating with multiple receivers. By providing efficient resource allocation at the edge of 6G networks, the proposed approach allows the communications system to adapt to varying channel conditions and achieves task-specific objectives while minimizing transmission overhead. Joint training of the encoder and decoders using multi-task learning captures shared information across tasks and optimizes the communication process accordingly. By leveraging the broadcast nature of wireless communications, multi-receiver task-oriented communications (MTOC) reduces the number of transmissions required to complete tasks at different receivers. Performance evaluation conducted on the MNIST, Fashion MNIST, and CIFAR-10 datasets (with image classification considered for different tasks) demonstrates the effectiveness of MTOC in terms of classification accuracy and resource utilization compared to single-task-oriented communication systems.
More
Translated text
Key words
Task-oriented communications,deep learning,multi-task learning,image classification
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined