Micro-Colony Forming Unit Assay for Efficacy Evaluation of Vaccines against Tuberculosis.

Journal of visualized experiments : JoVE(2023)

引用 0|浏览2
暂无评分
摘要
Tuberculosis (TB), the leading cause of death worldwide by an infectious agent, killed 1.6 million people in 2022, only being surpassed by COVID-19 during the 2019-2021 pandemic. The disease is caused by the bacterium Mycobacterium tuberculosis (M.tb). The Mycobacterium bovis strain Bacillus Calmette-Guérin (BCG), the only TB vaccine, is the oldest licensed vaccine in the world, still in use. Currently, there are 12 vaccines in clinical trials and dozens of vaccines under pre-clinical development. The method of choice used to assess the efficacy of TB vaccines in pre-clinical studies is the enumeration of bacterial colonies by the colony-forming units (CFU) assay. This time-consuming assay takes 4 to 6 weeks to conclude, requires substantial laboratory and incubator space, has high reagent costs, and is prone to contamination. Here we describe an optimized method for colony enumeration, the micro-CFU (mCFU), that offers a simple and rapid solution to analyze M.tb vaccine efficacy results. The mCFU assay requires tenfold fewer reagents, reduces the incubation period threefold, taking 1 to 2 weeks to conclude, reduces lab space and reagent cost, and minimizes the health and safety risks associated with working with large numbers of M.tb. Moreover, to evaluate the efficacy of a TB vaccine, samples may be obtained from a variety of sources, including tissues from vaccinated animals infected with Mycobacteria. We also describe an optimized method to produce a unicellular, uniform, and high-quality mycobacterial culture for infection studies. Finally, we propose that these methods should be universally adopted for pre-clinical studies of vaccine efficacy determination, ultimately leading to time reduction in the development of vaccines against TB.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要