Inducing room-temperature valley polarization of excitonic emission in transition metal dichalcogenide monolayers

NPJ 2D MATERIALS AND APPLICATIONS(2024)

引用 0|浏览14
暂无评分
摘要
The lowest energy states in transition metal dichalcogenide (TMD) monolayers follow valley selection rules, which have attracted vast interest due to the possibility of encoding and processing of quantum information. However, these quantum states are strongly affected by temperature-dependent intervalley scattering leading to complete valley depolarization, which hampers practical applications at room temperature. Therefore, for achieving clear and robust valley polarization in TMD monolayers one needs to suppress parasitic depolarization processes, which is the central challenge in the growing field of valleytronics. Here, in electron-doping experiments on TMD monolayers, we show that strong doping levels beyond 1013 cm-2 can induce 61% and 37% valley contrast at room temperature in tungsten diselenide and molybdenum diselenide monolayers, respectively. Our findings demonstrate that charged excitons in TMD monolayers hold the potential for the development of efficient valleytronic devices functional at 300 K.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要