Coriolus versicolor laccase-based inorganic protein hybrid synthesis for application in biomass saccharification to enhance biological production of hydrogen and ethanol

Enzyme and microbial technology(2023)

引用 0|浏览9
暂无评分
摘要
In this study, a bio-friendly inorganic protein hybrid-based enzyme immobilization system using partially purified Coriolus versicolor laccase (CvLac) was successfully applied to biomass hydrolysis for the enhancement of sugar production aimed at generating biofuels. After four days of incubation, the maximum CvLac production was achieved at 140 U/mg of total protein in the presence of inducers such as copper and wheat bran after four days of incubation. Crude CvLac immobilized through inorganic protein hybrids such as nanoflowers (NFs) using zinc as Zn3(PO4)2/CvLac hybrid NFs (Zn/CvLac-NFs) showed a maximum encapsulation yield of 93.4% and a relative activity of 265% compared to free laccase. The synthesized Zn/CvLac-NFs exhibited significantly improved activity profiles and stability compared to free enzymes. Furthermore, Zn/CvLac-NFs retained a significantly high residual activity of 96.2% after ten reuse cycles. The saccharification of poplar biomass improved ∼2-fold in the presence of Zn/CvLac-NFs, with an 8-fold reduction in total phenolics compared to the control. The Zn/CvLac-NFs treated biomass hydrolysate showed high biological hydrogen (H2) production and ethanol conversion efficiency of up to 2.68 mol/mol of hexose and 79.0% compared to the control values of 1.27 mol of H2/mol of hexose and 58.4%, respectively. The CvLac hybrid NFs are the first time reported for biomass hydrolysis, and a significant enhancement in the production of hydrogen and ethanol was reported. The synthesis of such NFs based on crude forms of diverse enzymes can potentially be extended to a broad range of biotechnological applications.
更多
查看译文
关键词
Laccase immobilization,Protein-inorganic hybrid,Stability,Biohydrogen, bioethanol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要