Exercise training inhibits macrophage-derived IL-17A-CXCL5-CXCR2 inflammatory axis to attenuate pulmonary fibrosis in mice exposed to silica.

The Science of the total environment(2023)

引用 3|浏览6
暂无评分
摘要
Exposure to crystalline silica leads to health effects beyond occupational silicosis. Exercise training's potential benefits on pulmonary diseases yield inconsistent outcomes. In this study, we utilized experimental silicotic mice subjected to exercise training and pharmacological interventions, including interleukin-17A (IL-17A) neutralizing antibody or clodronate liposome for macrophage depletion. Findings reveal exercise training's ability to mitigate silicosis progression in mice by suppressing scavenger receptor B (SRB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Toll-like receptor 4 (TLR4) pathways. Macrophage-derived IL-17A emerges as primary source and trigger for silica-induced pulmonary inflammation and fibrosis. Exercise training effectively inhibits IL-17A-CXC motif chemokine ligand 5 (CXCL5)-Chemokine (C-X-C motif) Receptor 2 (CXCR2) axis in silicotic mice. Our study evidences exercise training's potential to reduce collagen deposition, preserve elastic fibers, slow pulmonary fibrosis advancement, and enhance pulmonary function post silica exposure by impeding macrophage-derived IL-17A-CXCL5-CXCR2 axis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要