Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation

Nahal Goodarzi, Zahra Ashrafi-Peyman, Elahe Khani,Alireza Z. Moshfegh

Catalysts(2023)

引用 5|浏览0
暂无评分
摘要
Semiconductor-based photocatalytic reactions are a practical class of advanced oxidation processes (AOPs) to address energy scarcity and environmental pollution. By utilizing solar energy as a clean, abundant, and renewable source, this process offers numerous advantages, including high efficiency, eco-friendliness, and low cost. In this review, we present several methods to construct various photocatalyst systems with excellent visible light absorption and efficient charge carrier separation ability through the optimization of materials design and reaction conditions. Then it introduces the fundamentals of photocatalysis in both clean energy generation and environmental remediation. In the other parts, we introduce various approaches to enhance photocatalytic activity by applying different strategies, including semiconductor structure modification (e.g., morphology regulation, co-catalysts decoration, doping, defect engineering, surface sensitization, heterojunction construction) and tuning and optimizing reaction conditions (such as photocatalyst concentration, initial contaminant concentration, pH, reaction temperature, light intensity, charge-carrier scavengers). Then, a comparative study on the photocatalytic performance of the various recently examined photocatalysts applied in both clean energy production and environmental remediation will be discussed. To realize these goals, different photocatalytic reactions including H-2 production via water splitting, CO2 reduction to value-added products, dye, and drug photodegradation to lessen toxic chemicals, will be presented. Subsequently, we report dual-functional photocatalysis systems for simultaneous energy production and pollutant photodegradation for efficient reactions. Then, a brief discussion about the industrial and economical applications of photocatalysts is described. The report follows by introducing the application of artificial intelligence and machine learning in the design and selection of an innovative photocatalyst in energy and environmental issues. Finally, a summary and future research directions toward developing photocatalytic systems with significantly improved efficiency and stability will be provided.
更多
查看译文
关键词
advanced oxidation process (AOPs),semiconductor-based photocatalysts,H-2 production,water splitting,CO2 reduction,dye and drug photodegradation,dual-functional photocatalysis,industrial photocatalyst,artificial intelligence,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要