Emergence of new materials for exploiting highly efficient carrier multiplication in photovoltaics

Chemical physics reviews(2020)

引用 10|浏览3
暂无评分
摘要
In conventional solar cell semiconductor materials, the excess energy of electrons and holes beyond the bandgap is wasted as heat, because they cool down to the band edge due to phonon emission. If the excess energy is more than the bandgap, it can in principle be utilized through a process known as carrier multiplication (CM) in which a single photon generates two (or more) electron-hole pairs. In this way, CM can enhance the photocurrent of a photovoltaic device. We provide an overview of experimental and theoretical methods used to study CM. Next, we consider the effects of composition and nanostructure of materials, on the threshold photon energy and efficiency of CM. Results for percolative networks of coupled PbSe quantum dots, Sn/Pb based halide perovskites, and two-dimensional transition metal dichalcogenides such as MoTe2 are discussed. Based on our current understanding, the CM threshold can get close to the minimal value of twice the bandgap in materials where a photon induces an asymmetric electronic transition from a deeper valence band or to a higher conduction band. We then address the effects of the exciton binding energy and charge carrier mobility on the photogeneration of free charges and their extraction at external electrodes of a photovoltaic device. Finally, we discuss future directions toward the development of new materials to realize a low threshold photon energy and high efficiency of CM.
更多
查看译文
关键词
efficient carrier multiplication,new materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要