1.3/1.4 µm dual-wave band dissipative soliton resonance in a passively mode-locked Bi-doped phosphosilicate fiber laser

Optics Letters(2023)

引用 2|浏览1
暂无评分
摘要
We report the 1.3/1.4 µm dual-wave band dissipative soliton resonance (DSR) in a passively mode-locked bismuth-doped phosphosilicate fiber (Bi-PSF) laser. The low-water-peak Bi-PSF with two bismuth active centers associated with silicon and phosphorus supports the O+E-band gain. Using a 1239 nm home-made Raman fiber laser as pump source and nonlinear amplifying loop mirror for initiating mode-locking, stable DSR operation at 1343 and 1406 nm is achieved with the spectral bandwidth of 12 and 16 nm. The pulse duration with the pump power increases from 62 to 270 ps with a repetition frequency of 4.069 MHz. The average power is 11.05 mW corresponding to the maximum energy of 2.7 nJ. This is, to the best of our knowledge, the first demonstration of a mode-locked fiber laser in the ∼1.38 µm water absorption band and the O+E dual-wave band operation for applications in all-spectral-band communications, bio-medical imaging, and terahertz difference frequency generation.
更多
查看译文
关键词
fiber laser,dual-wave,mode-locked,bi-doped
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要