Chrome Extension
WeChat Mini Program
Use on ChatGLM

OSA-HCIM: On-The-Fly Saliency-Aware Hybrid SRAM CIM with Dynamic Precision Configuration

29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024(2024)

Cited 0|Views14
Abstract
Computing-in-Memory (CIM) has shown great potential for enhancing efficiency and performance for deep neural networks (DNNs). However, the lack of flexibility in CIM leads to an unnecessary expenditure of computational resources on less critical operations, and a diminished Signal-to-Noise Ratio (SNR) when handling more complex tasks, significantly hindering the overall performance. Hence, we focus on the integration of CIM with Saliency-Aware Computing—a paradigm that dynamically tailors computing precision based on the importance of each input. We propose On-the-fly Saliency-Aware Hybrid CIM (OSA-HCIM) offering three primary contributions: (1) On-the-fly Saliency-Aware (OSA) precision configuration scheme, which dynamically sets the precision of each multiply-and-accumulate (MAC) operation based on its saliency, (2) Hybrid CIM Array (HCIMA), which enables simultaneous operation of digital-domain CIM (DCIM) and analog-domain CIM (ACIM) via split-port 6T SRAM, and (3) an integrated framework combining OSA and HCIMA to fulfill diverse accuracy and power demands.Implemented on a 65nm CMOS process, OSA-HCIM demon-strates an exceptional balance between accuracy and resource utilization. Notably, it is the first CIM design to incorporate a dynamic digital-to-analog boundary, providing unprecedented flexibility for saliency-aware computing. OSA-HCIM achieves a 1. 95x enhancement in energy efficiency, while maintaining minimal accuracy loss compared to DCIM when tested on CIFAR100 dataset.
More
Translated text
Key words
Computing-in-Memory (CIM),saliency,hybrid CIM (HCIM)
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined