Chiral cavity-magnonic system for the unidirectional emission of a tunable squeezed microwave field

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
Unidirectional photon emission is crucial for constructing quantum networks and realizing scalable quantum information processing. In the present work an efficient scheme is developed for the unidirectional emission of a tunable squeezed microwave field. Our scheme is based on a chiral cavity magnonic system, where a magnon mode in a single-crystalline yttrium iron garnet (YIG) sphere is selectively coupled to one of the two degenerate rotating microwave modes in a torus-shaped cavity with the same chirality. With the YIG sphere driven by a two-color Floquet field to induce sidebands in the magnon-photon coupling, we show that the unidirectional emission of a tunable squeezed microwave field can be generated via the assistance of the dissipative magnon mode and a waveguide. Moreover, the direction of the proposed one-way emitter can be controlled on demand by reversing the biased magnetic field. Our work opens up an avenue to create and manipulate one-way nonclassical microwave radiation field and could find potential quantum technological applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络