Chrome Extension
WeChat Mini Program
Use on ChatGLM

Text-Only Domain Adaptation for End-to-End Speech Recognition through Down-Sampling Acoustic Representation

Conference of the International Speech Communication Association(2023)

Cited 0|Views40
No score
Abstract
Mapping two modalities, speech and text, into a shared representation space, is a research topic of using text-only data to improve end-to-end automatic speech recognition (ASR) performance in new domains. However, the length of speech representation and text representation is inconsistent. Although the previous method up-samples the text representation to align with acoustic modality, it may not match the expected actual duration. In this paper, we proposed novel representations match strategy through down-sampling acoustic representation to align with text modality. By introducing a continuous integrate-and-fire (CIF) module generating acoustic representations consistent with token length, our ASR model can learn unified representations from both modalities better, allowing for domain adaptation using text-only data of the target domain. Experiment results of new domain data demonstrate the effectiveness of the proposed method.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined