谷歌浏览器插件
订阅小程序
在清言上使用

Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices

INFOMAT(2024)

引用 1|浏览7
暂无评分
摘要
The exponentially increasing heat generation in electronic devices, induced by high power density and miniaturization, has become a dominant issue that affects carbon footprint, cost, performance, reliability, and lifespan. Liquid metals (LMs) with high thermal conductivity are promising candidates for effective thermal management yet are facing pump-out and surface-spreading issues. Confinement in the form of metallic particles can address these problems, but apparent alloying processes elevate the LM melting point, leading to severely deteriorated stability. Here, we propose a facile and sustainable approach to address these challenges by using a biogenic supramolecular network as an effective diffusion barrier at copper particle-LM (EGaIn/Cu@TA) interfaces to achieve superior thermal conduction. The supramolecular network promotes LM stability by reducing unfavorable alloying and fluidity transition. The EGaIn/Cu@TA exhibits a record-high metallic-mediated thermal conductivity (66.1 W m(-1) K-1) and fluidic stability. Moreover, mechanistic studies suggest the enhanced heat flow path after the incorporation of copper particles, generating heat dissipation suitable for computer central processing units, exceeding that of commercial silicone. Our results highlight the prospects of renewable macromolecules isolated from biomass for the rational design of nanointerfaces based on metallic particles and LM, paving a new and sustainable avenue for high-performance thermal management.
更多
查看译文
关键词
Electronic devices,High thermal conductivity,Liquid metals,Natural polyphenols,Thermal management
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要