Synthesis and advantages of spinel-type composites

MATERIALS CHEMISTRY FRONTIERS(2023)

引用 0|浏览3
暂无评分
摘要
Composite structures have attracted increasing interest in various energy storage and conversion fields owing to their corresponding interfacial effects, lattice strain effects, electronic interactions, and strong interaction effects that significantly impact their catalytic performance. Therefore, it is vital to construct and probe the composite structure to exploit high-performance energy-related catalysts. Spinel-type composites are conisdered promising candidates of catalytic materials for use in energy fields due to their various advantages, including versatility, low toxicity, low expense, and high natural abundance. Also, their unique and attractive characteristics of a multivalent structure and flexible ion arrangement provide more possibilities for the effective construction of various diverse composites. Herein, an overview focusing on different synthesis and modulation methods is summarized, based on an in-depth understanding of the relationship between their structure and activity. In this review, the basic structural characteristics of spinels are introduced and then the composite effects and methods are highlighted. In order to provide some perspectives on the design of spinel-type composite oxides, we elaborate the relationship between the composite structure and energy-conversion property. Finally, the current challenges and outlooks are also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要