Construction of flower-like hierarchical Ni-doped SnO2 nanosheets and their gas sensing properties for ethanol

NEW JOURNAL OF CHEMISTRY(2023)

引用 0|浏览10
暂无评分
摘要
Detecting ethanol is desirable in alcohol testing for safe driving. Therefore, developing an ethanol sensor with an obvious response and fast detection speed is urgent. In this work, a series of Ni-doped SnO2 nanosheets with flower-like hierarchical morphologies have been constructed and utilized for detecting ethanol vapor. The results indicate that the sensor response (R-a/R-g) of 3 mol% Ni-doped SnO2 is as high as 43.22 towards 100 ppm ethanol at 275 & DEG;C, about 6 times higher than that of pure SnO2. In addition, a short response/recovery time (11 s/14 s for 100 ppm ethanol), and excellent selectivity are also determined. This improved ethanol-sensing response is ascribed to two aspects: (1) a unique open structure assembled by ultrathin nanosheets (20-25 nm), favorable for gas-diffusion and gas-solid interactions and (2) a higher number of oxygen vacancies and chemisorbed oxygen in SnO2 after Ni-doping, contributing to the gas-sensing response. This work presents an efficient strategy combining morphology design and doped engineering for exploiting high-performance gas sensors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要