Assessment of Spatiotemporal Patterns and the Effect of the Relationship between Meteorological Drought and Vegetation Dynamics in the Yangtze River Basin Based on Remotely Sensed Data

REMOTE SENSING(2023)

引用 1|浏览0
暂无评分
摘要
Global climate change and human activities have increased the frequency and severity of droughts. This has become a critical factor affecting vegetation growth and diversity, resulting in detrimental effects on agricultural production, ecosystem stability, and socioeconomic development. Therefore, assessing the response of vegetation dynamics to drought can offer valuable insights into the physiological mechanisms of terrestrial ecosystems. Here, we applied long-term datasets (2001-2020) of solar-induced chlorophyll fluorescence (SIF) and normalized difference vegetation index (NDVI) to unveil vegetation dynamics and their relationship to meteorological drought (SPEI) across different vegetation types in the Yangtze River Basin (YRB). Linear correlation analysis was conducted to determine the maximum association of SPEI with SIF and NDVI; we then compared their responses to meteorological drought. The improved partial wavelet coherence (PWC) method was utilized to quantitatively assess the influences of large-scale climate patterns and solar activity on the relationship between vegetation and meteorological drought. The results show that: (1) Droughts were frequent in the YRB from 2001 to 2020, and the summer's dry and wet conditions exerted a notable influence on the annual climate. (2) SPEI exhibits a more significant correlation with SIF than with NDVI. (3) NDVI has a longer response time (3-6 months) to meteorological drought than SIF (1-4 months). Both SIF and NDVI respond faster in cropland and grassland but slower in evergreen broadleaf and mixed forests. (4) There exists a significant positive correlation between vegetation and meteorological drought during the 4-16 months period. The teleconnection factors of Pacific Decadal Oscillation (PDO), El Nino Southern Oscillation (ENSO), and sunspots are crucial drivers that affect the interaction between meteorological drought and vegetation, with sunspots having the most significant impact. Generally, our study indicates that drought is an essential environmental stressor that disrupts vegetation growth over the YRB. Additionally, SIF demonstrates great potential in monitoring vegetation response to drought. These findings will be meaningful for drought prevention and ecosystem conservation planning in the YRB.
更多
查看译文
关键词
climate change,meteorological drought,vegetation dynamics,SIF,NDVI,Yangtze River Basin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要