谷歌浏览器插件
订阅小程序
在清言上使用

Formation of Cu–Au Porphyry Deposits: Hydraulic Quartz Veins, Magmatic Processes and Constraints from Chlorine

Australian journal of earth sciences(2023)

引用 0|浏览4
暂无评分
摘要
Copper-gold porphyry deposits are the world's main source of copper and a significant source of gold. They consist of vein networks and their surrounding alteration zones. Commonly the deposits are centred on narrow intrusions (stocks), but calling these deposits 'porphyries' is unjustified because the name carries little descriptive or genetic value. Extensional veins were formed by hydraulic fracturing of the stocks, at depths where open spaces could not be maintained and where fluid pressure approaches lithostatic pressure. The post-crystallisation timing of the veins is important because it indicates that the host stocks could not have been the direct sources of either metals or ore-forming fluids. In the traditional magmatic model, precursor batholiths, lying at depth, are inferred to be the sources of the Cu and Au in the overlying host stocks. In this model, the batholiths are assumed to have crystallised and produced the mineralising aqueous fluids, Cu and Au. However, in many porphyry deposits, the concept of metal and fluid supply from deeper batholiths is problematic. Neither Cu nor Au is strongly enriched during the crystallisation of silicate magmas, and although hypersaline fluids are a characteristic of Cu-Au porphyry deposits globally, the source of the Cl remains unconstrained. There is little evidence that silicate magmas can release such Cl-rich fluids, and it remains unexplained how elevated levels of Cl may be achieved in a silicate magma. Therefore, the starting assumption that these deposits formed predominantly from magmatic sources and processes is questioned. This study has selectively focused on the roles of rheology, rock mechanics, vein control, metal-enrichment processes and the sources of Cl. Non-magmatic processes may be enough to facilitate strong partitioning of Cu and Au into high-temperature, oxidising, high-salinity, hydrothermal fluids to form Cu-Au porphyry deposits.
更多
查看译文
关键词
hydraulic veins,hydraulic fracture,rheology,copper porphyry,gold,magmatic,hypersaline fluids,metamorphism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要