Real-time selective detection of dopamine and serotonin at nanomolar concentration from complex in vitro systems

BIOSENSORS & BIOELECTRONICS(2023)

引用 0|浏览9
暂无评分
摘要
Electrochemical sensors provide means for real-time monitoring of neurotransmitter release events, which is a relatively easy process in simple electrolytes. However, this does not apply to in vitro environments. In cell culture media, competitively adsorbing molecules are present at concentrations up to 350 000-fold excess compared to the neurotransmitter-of-interest. Because detection of dopamine and serotonin requires direct adsorption of the analyte to electrode surface, a significant loss of sensitivity occurs when recording is performed in the in vitro environment. Despite these challenges, our single-walled carbon nanotube (SWCNT) sensor was capable of selectively measuring dopamine and serotonin from cell culture medium at nanomolar concentration in real-time. A primary midbrain culture was used to prove excellent biocompatibility of our SWCNT electrodes, which is a necessity for brain-on-a-chip models. Most importantly, our sensor was able to electrochemically record spontaneous transient activity from dopaminergic cell culture without altering the culture conditions, which has not been possible earlier. Drug discovery and development requires high-throughput screening of in vitro models, being hindered by the challenges in non-invasive characterization of complex neuronal models such as organoids. Our neurotransmitter sensors could be used for real-time monitoring of complex neuronal models, providing an alternative tool for their characterization non-invasively.
更多
查看译文
关键词
Electrochemical sensor,Dopamine,Serotonin,In vitro
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要