Azole fungicides inhibit human and rat gonadal 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association(2023)

引用 0|浏览1
暂无评分
摘要
Azole fungicides are widely used in the agricultural industry to control fungal infections in crops. However, recent studies have shown that some azole fungicides inhibit the activity of 3β-hydroxysteroid dehydrogenases (3β-HSDs) in the gonads. Out of the 16 azole fungicides tested, 8 were found to inhibit human KGN cell 3β-HSD2 with IC50 values of less than 100 μM. The strongest inhibitor was difenoconazole, with an IC50 value of 1.88 μM. In contrast, only 3 of the azole fungicides inhibited rat testicular 3β-HSD1, which was less sensitive to inhibition. Azole fungicides potently inhibited progesterone secretion by KGN cells under basal and forskolin stimulated conditions at ≥ 5 μM. The inhibitory strength of azole fungicides was determined by their lipophilicity (LogP), molecular weight, pKa, and binding energy. A pharmacophore analysis revealed that the hydrogen bond acceptor-lipid group was a critical feature required for inhibition. Overall, these findings suggest that the use of azole fungicides have unintended consequences on reproductive health due to their inhibition of gonadal 3β-HSDs. Key words: Azole fungicides; steroid hormones; 3β-hydroxysteroid dehydrogenase; docking analysis; lipophilicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要