Berberine ameliorates glucocorticoid-induced hyperglycemia: an in vitro and in vivo study

Mrinal Gupta, Mohammad Rumman,Babita Singh, Abbas Ali Mahdi,Shivani Pandey

Naunyn-Schmiedeberg's Archives of Pharmacology(2024)

引用 0|浏览3
暂无评分
摘要
Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have less side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed for evaluating the development of the diabetic model. Echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis was analyzed. In vitro BBR had no impact on cell viability up to a concentration of 50 μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.
更多
查看译文
关键词
Glucocorticoid,Hyperglycemia,Berberine,HepG2 cells,Insulin resistance,Glucose
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要