Integrating metal-organic framework ZIF-8 with green modifier empowered bacteria with improved bioremediation

JOURNAL OF HAZARDOUS MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Suspended microorganisms often experience diminished efficacy in the bioremediation of polycyclic aromatic hydrocarbons (PAHs). In this study, the potential of zeolite imidazolate framework-8 (ZIF-8) and the eco-friendly modifier citric acid (CA) was harnessed to generate a biomimetic mineralized protective shell on the surface of Bacillus subtilis ZL09-26, resulting in an enhanced capability for PAH degradation. This investigation encom-passed the integrated responses of B. subtilis ZL09-26 to ZIF-8 and ZIF-8-CA at both cellular and proteomic levels. The amalgamation of ZIF-8 and CA not only stimulated the growth and bolstered the cell viability of B. subtilis ZL09-26, but also counteracted the toxic effects of phenanthrene (PHE) stress. Remarkably, the bioremediation prowess of B. subtilis ZL09-26@ZIF-8-CA surpassed that of ZL09-26@ZIF-8 and ZL09-26, achieving a PHE removal rate of 94.14 % within 6 days. After undergoing five cycles, ZL09-26@ZIF-8-CA demonstrated an enduring PHE removal rate exceeding 83.31 %. A complex interplay of various metabolic pathways orchestrated cellular responses, enhancing PHE transport and degradation. These pathways encompassed direct PHE biodegradation, central carbon metabolism, oxidative phosphorylation, purine metabolism, and aminoacyl-tRNA biosynthesis. This study not only extends the potential applications of biomineralized organisms but also offers alternative strategies for effective contaminant management.
更多
查看译文
关键词
Biomimetic mineralization,Phenanthrene,Citric acid,ZIF-8,Bioremediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要