谷歌浏览器插件
订阅小程序
在清言上使用

Operando Tomographic Microscopy During Laser-Based Powder Bed Fusion of Alumina

Communications materials(2023)

引用 0|浏览19
暂无评分
摘要
Laser-based Powder Bed Fusion (LPBF) of oxide ceramics enables fabrication of objects with complex three-dimensional shapes. However, mechanical properties of dense LPBF-manufactured ceramics are poor due to large amount of structural defects. Here, we perform the operando tomographic microscopy during LPBF of a magnetite-modified alumina to gain a deeper understanding of the underlying mechanisms. The effect of the laser energy density on the surface roughness, powder denudation zone and porosity formation mechanisms are investigated. Increasing laser power results in significant increase of the melt pool width, but not its depth and no melt pool depression is observed. Forces due to the recoil pressure are not seen to significantly influence the melt pool dynamics. Increasing power allows to avoid fusion porosity but enhances formation of spherical porosity that is formed by either reaching boiling point of liquid alumina, or by introducing gas bubbles by injection of hollow powder particles into the liquid. Understanding the effects of changing process parameters during additive manufacturing is vital for building high-quality parts. Here, operando tomographic microscopy during laser-based processing of alumina reveals detailed insight into process dynamics, including melt pool behavior and defect formation.
更多
查看译文
关键词
Ceramics,Structure of solids and liquids,Materials Science,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要