Effect of Ambient Environment on Laser Reduction of Graphene Oxide for Applications in Electrochemical Sensing

Sensors(2023)

引用 0|浏览5
暂无评分
摘要
Electrochemical sensors play an important role in a variety of applications. With the potential for enhanced performance, much of the focus has been on developing nanomaterials, in particular graphene, for such sensors. Recent work has looked towards laser scribing technology for the reduction of graphene oxide as an easy and cost-effective option for sensor fabrication. This work looks to develop this approach by assessing the quality of sensors produced with the effect of different ambient atmospheres during the laser scribing process. The graphene oxide was reduced using a laser writing system in a range of atmospheres and sensors characterised with Raman spectroscopy, XPS and cyclic voltammetry. Although providing a slightly higher defect density, sensors fabricated under argon and nitrogen atmospheres exhibited the highest average electron transfer rates of approximately 2 × 10−3 cms−1. Issues of sensor reproducibility using this approach are discussed.
更多
查看译文
关键词
reduced graphene oxide, electrochemical sensors, sensor fabrication, laser reduction, cyclic voltammetry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要