Overexpression of MdFRK2 enhances apple drought resistance by promoting carbohydrate metabolism and root growth under drought stress

Horticultural Plant Journal(2023)

引用 0|浏览8
暂无评分
摘要
Soluble sugars function not only as the energy and structural blocks supporting plants, but also as osmoregulators and signal molecules during plant adaptation to water deficit. Here, we investigated drought resistance in transgenic apple (Malus × domestica) overexpressing MdFRK2, a key gene regulating fructose content and sugar metabolism. There is no obvious phenotypic difference between MdFRK2-overexpressing transgenic plants and WT plants under the well-watered condition. However, the transgenic plants and the grafted plants using MdFRK2-overexpressing rootstock exhibited improved tolerance to drought stress. Overexpression of MdFRK2 significantly promoted the growth of root system under drought stress. RNA sequencing showed that under drought stress, genes involved in sugar metabolism, transcription regulation, signal transduction or hormone metabolism were differentially expressed in MdFRK2 transgenic plants. Consistent with the gene expression profile, the activities of enzyme (SDH, FRK and NI) involved in sugar metabolism in the roots of MdFRK2 transgenic plants were significantly higher than those of untransformed control plants after drought stress. Under drought stress, overexpression of MdFRK2 promoted the accumulation of IAA, and decreased the contents of ABA and CK in apple root system. In conclusion, these results suggest that MdFRK2 can promote the growth of apple roots under drought stress by regulating sugar metabolism and accumulation, hormone metabolism and signal transduction, and then resist drought stress.
更多
查看译文
关键词
Malus × domestica,MdFRK2,Drought stress,Sugar,Auxin,Signal transduction,Transcriptome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要