谷歌浏览器插件
订阅小程序
在清言上使用

Stabilizing the Calculation of the Self-Energy in Dynamical Mean-Field Theory Using Constrained Residual Minimization

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
We propose a simple and efficient method to calculate the electronic self-energy in dynamical mean-field theory (DMFT), addressing a numerical instability often encountered when solving the Dyson equation. Our approach formulates the Dyson equation as a constrained optimization problem with a simple quadratic objective. The constraints on the self-energy are obtained via direct measurement of the leading order terms of its asymptotic expansion within a continuous time quantum Monte Carlo framework, and the use of the compact discrete Lehmann representation of the self-energy yields an optimization problem in a modest number of unknowns. We benchmark our method for the non-interacting Bethe lattice, as well as DMFT calculations for both model systems and ab-initio applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要