Synthesis and structure-activity relationship studies of fusidic acid derivatives as anti-inflammatory agents for acute lung injury.

Bioorganic chemistry(2023)

引用 0|浏览3
暂无评分
摘要
Acute lung injury (ALI) are severe forms of diffuse lung disease that impose a substantial health burden all over the world. In the United States, approximately 190,000 cases per year of ALI each year, with an associated 74,500 deaths per year. Anti-inflammatory therapy has become a reasonable approach for the treatment of patients with ALI. In this study, fusidic acid derivatives were used to design new anti-inflammatory compounds with high pharmacological activity and low toxicity. A total of 30 new fusidic acid derivatives were discovered, synthesized, and screened for their anti-inflammatory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells. Of them, b2 was found to be the most active, with a higher efficiency compared with fusidic acid and celecoxib in 10 μM. In vitro, we further measured b2 inhibited inflammatory factor NO (IC = 5.382 ± 0.655 μM), IL-6 (IC = 7.767 ± 0.871 μM), and TNF-α (IC = 7.089 ± 0.775 μM) and b2 inhibited inflammatory cytokines COX-2 and iNOS, ROS production, NF-κB/MAPK and Bax/Bcl-2 signaling pathway pathway. In vivo,b2 attenuated ALI pathological changes and inhibited inflammatory cytokines COX-2 and iNOS in lung tissue and NF-κB/MAPK and Bax/Bcl-2 signaling pathway. In conclusion, b2 may be a promising anti-inflammatory lead compound.
更多
查看译文
关键词
Fusidic acid, Synthesis, Structure-activity relationships, Anti-inflammatory, MAPK/NF-kappa B, Bax/Bcl-2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要