Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation.

International journal of pharmaceutics(2023)

引用 0|浏览0
暂无评分
摘要
This study aims to develop a pharmaceutical formulation that combines the potent antibacterial effect of lincomycin and lauric acid against Cutibacterium acnes (C. acnes), a bacterium implicated in acne. The selection of lauric acid was based on an in silico study, which suggested that its interaction with specific protein targets of C. acnes may contribute to its synergistic antibacterial and anti-inflammatory effects. To achieve our aim, glycerosomes were fabricated with the incorporation of lauric acid as a main constituent of glycerosomes vesicular membrane along with cholesterol and phospholipon 90H, while lincomycin was entrapped within the aqueous cavities. Glycerol is expected to enhance the cutaneous absorption of the active moieties via hydrating the skin. Optimization of lincomycin-loaded glycerosomes (LM-GSs) was conducted using a mixed factorial experimental design. The optimized formulation; LM-GS4 composed of equal ratios of cholesterol:phospholipon90H:Lauric acid, demonstrated a size of 490 ± 17.5 nm, entrapment efficiency-values of 90 ± 1.4 % for lincomycin, and97 ± 0.2 % for lauric acid, and a surface charge of -30.2 ± 0.5mV. To facilitate its application on the skin, the optimized formulation was incorporated into a carbopol hydrogel. The formed hydrogel exhibited a pH value of 5.95 ± 0.03 characteristic of pH-balanced skincare and a shear-thinning non-Newtonian pseudoplastic flow. Skin deposition of lincomycin was assessed using an in-house developed and validated LC-MS/MS method employing gradient elution and electrospray ionization detection. Results revealed that LM-GS4 hydrogel exhibited a two-fold increase in skin deposition of lincomycin compared to lincomycin hydrogel, indicating improved skin penetration and sustained release. The synergistic healing effect of LM-GS4 was evidenced by a reduction in inflammation, bacterial load, and improved histopathological changes in an acne mouse model. In conclusion, the proposed formulation demonstrated promising potential as a topical treatment for acne. It effectively enhanced the cutaneous absorption of lincomycin, exhibited favorable physical properties, and synergistic antibacterial and healing effects. This study provides valuable insights for the development of an effective therapeutic approach for acne management.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要