GiganticNVS: Gigapixel Large-Scale Neural Rendering With Implicit Meta-Deformed Manifold

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE(2024)

引用 0|浏览19
暂无评分
摘要
The rapid advances of high-performance sensation empowered gigapixel-level imaging/videography for large-scale scenes, yet the abundant details in gigapixel images were rarely valued in 3d reconstruction solutions. Bridging the gap between the sensation capacity and that of reconstruction requires to attack the large-baseline challenge imposed by the large-scale scenes, while utilizing the high-resolution details provided by the gigapixel images. This paper introduces GiganticNVS for gigapixel large-scale novel view synthesis (NVS). Existing NVS methods suffer from excessively blurred artifacts and fail on the full exploitation of image resolution, due to their inefficacy of recovering a faithful underlying geometry and the dependence on dense observations to accurately interpolate radiance. Our key insight is that, a highly-expressive implicit field with view-consistency is critical for synthesizing high-fidelity details from large-baseline observations. In light of this, we propose meta-deformed manifold, where meta refers to the locally defined surface manifold whose geometry and appearance are embedded into high-dimensional latent space. Technically, meta can be decoded as neural fields using an MLP (i.e., implicit representation). Upon this novel representation, multi-view geometric correspondence can be effectively enforced with featuremetric deformation and the reflectance field can be learned purely on the surface. Experimental results verify that the proposed method outperforms state-of-the-art methods both quantitatively and qualitatively, not only on the standard datasets containing complex real-world scenes with large baseline angles, but also on the challenging gigapixel-level ultra-large-scale benchmarks.
更多
查看译文
关键词
Novel view synthesis,neural scene representation,sparse-view,large-baseline,gigapixel rendering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要