谷歌浏览器插件
订阅小程序
在清言上使用

Specific Ion Effects on Lignin Adsorption and Transport Through Cellulose Confinements.

Journal of colloid and interface science(2024)

引用 0|浏览2
暂无评分
摘要
The presence of ions in a solution is anticipated to induce distinct effects on macromolecules. Consequently, the tuning of adsorption and mass transfer of lignin molecules can be achieved by incorporating ions with chaotropic or kosmotropic characteristics. This study examines the adsorption and mass transfer behavior of lignin molecules across model cellulose membranes in presence of ions from the Hofmeister series. Experimental investigations encompassed the use of diffusion cells to quantify lignin's mass transfer through the membranes, and quartz crystal microbalance with dissipation (QCM-D) monitoring was used for adsorption studies. Notably, at high ion concentrations, the mass transport rate of lignin was observed to be lower in the presence of highly hydrated (kosmotropic) sulfate ions, conforming to the Hofmeister series. Intriguingly, this relationship was not apparent at lower ion concentrations. Furthermore, QCM-D experiments indicated that lignin displayed higher adsorption onto the cellulose surface when exposed to less hydrated (chaotropic) nitrate anions. This behavior can be rationalized by considering the system's increased entropy gain, facilitated by the release of adsorbed ions and water molecules from the cellulose surface upon lignin adsorption. This study highlights the complexity of ion-specific effects on mass transfer and adsorption processes and their dependency on ion concentrations.
更多
查看译文
关键词
Ion-specific effects,Adsorption,Kraft lignin,Mass transport,Pulping,Hofmeister series,Charge diffuse ions,Charge dense ions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要