Polyamines mediate the inhibitory effect of drought stress on nitrogen reallocation and utilization to regulate grain number in wheat

JOURNAL OF EXPERIMENTAL BOTANY(2024)

引用 0|浏览9
暂无评分
摘要
Drought stress poses a serious threat to grain formation in wheat. Nitrogen (N) plays crucial roles in plant organ development; however, the physiological mechanisms by which drought stress affects plant N availability and mediates the formation of grains in spikes of winter wheat are still unclear. In this study, we determined that pre-reproductive drought stress significantly reduced the number of fertile florets and the number of grains formed. Transcriptome analysis demonstrated that this was related to N metabolism, and in particular, the metabolism pathways of arginine (the main precursor for synthesis of polyamine) and proline. Continuous drought stress restricted plant N accumulation and reallocation rates, and plants preferentially allocated more N to spike development. As the activities of amino acid biosynthesis enzymes and catabolic enzymes were inhibited, more free amino acids accumulated in young spikes. The expression of polyamine synthase genes was down-regulated under drought stress, whilst expression of genes encoding catabolic enzymes was enhanced, resulting in reductions in endogenous spermidine and putrescine. Treatment with exogenous spermidine optimized N allocation in young spikes and leaves, which greatly alleviated the drought-induced reduction in the number of grains per spike. Overall, our results show that pre-reproductive drought stress affects wheat grain numbers by regulating N redistribution and polyamine metabolism. Impaired spermidine biosynthesis under drought in wheat is involved in inhibition of nitrogen accumulation and utilization, leading to reduced grain number per spike.
更多
查看译文
关键词
Drought stress,fertile floret,grain yield,nitrogen allocation,nitrogen use efficiency,RNA-seq,amino acid,spermidine,water deficit,wheat,Triticum aestivum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要