Preoperative Prediction of Meningioma Subtype by Constructing a Clinical-Radiomics Model Nomogram Based on Magnetic Resonance Imaging.

World neurosurgery(2023)

引用 0|浏览1
暂无评分
摘要
OBJECTIVE:We sought to investigate the value of a clinical-radiomics model based on magnetic resonance imaging in differentiating fibroblastic meningiomas from non-fibroblastic meningiomas. METHODS:Clinical, imaging, and postoperative pathologic data of 423 patients (128 fibroblastic meningiomas and 295 non-fibroblastic meningiomas) were randomly categorized into training (n = 296) and validation (n = 127) groups at a 7:3 ratio. The Selectpercentile and LASSO were used to selected the highly correlated features from 3376 radiomics features. Different classifiers were used to train and verify the model. The receiver operating characteristic curves, accuracy (ACC), sensitivity (SEN), and specificity (SPE) were drawn to evaluate the performance. The optimal radiomics model was selected. Calibration curves and decision curve analysis were used to verify the clinical utility and consistency of the nomogram constructed from the radiomics features and clinical factors. RESULTS:Thirteen radiomics features were selected from contrast-enhanced T1-weighted imaging and T2-weighted imaging after dimensionality reduction. The prediction performance of random forest radiomics model is slightly lower than that of the clinical-radiomics model. The area under the curve, SEN, SPE, and ACC of the clinical-radiomics model training set were 0.836 (95% confidence interval, 0.795-0.878), 0.922, 0.583, and 0.686, respectively. The area under the curve, SEN, SPE, and ACC of the validation set were 0.756 (95% confidence interval, 0.660-0.846), 0.816, 0.596, and 0.661, respectively. CONCLUSIONS:The diagnostic efficacy of the clinical-radiomics model of fibroblastic meningioma and non-fibroblastic meningioma was better than that of the radiomics prediction model alone and can be used as a potential tool for clinical surgical planning and evaluation of patient prognosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要