Quantum Shadow Gradient Descent for Quantum Learning

CoRR(2023)

引用 0|浏览5
暂无评分
摘要
This paper proposes a new procedure called quantum shadow gradient descent (QSGD) that addresses these key challenges. Our method has the benefits of a one-shot approach, in not requiring any sample duplication while having a convergence rate comparable to the ideal update rule using exact gradient computation. We propose a new technique for generating quantum shadow samples (QSS), which generates quantum shadows as opposed to classical shadows used in existing works. With classical shadows, the computations are typically performed on classical computers and, hence, are prohibitive since the dimension grows exponentially. Our approach resolves this issue by measurements of quantum shadows. As the second main contribution, we study more general non-product ansatz of the form $\exp\{i\sum_j \theta_j A_j\}$ that model variational Hamiltonians. We prove that the gradient can be written in terms of the gradient of single-parameter ansatzes that can be easily measured. Our proof is based on the Suzuki-Trotter approximation; however, our expressions are exact, unlike prior efforts that approximate non-product operators. As a result, existing gradient measurement techniques can be applied to more general VQAs followed by correction terms without any approximation penalty. We provide theoretical proofs, convergence analysis and verify our results through numerical experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要