Pan-centromere reveals widespread centromere repositioning of soybean genomes.

Proceedings of the National Academy of Sciences of the United States of America(2023)

引用 1|浏览4
暂无评分
摘要
Centromere repositioning refers to a de novo centromere formation at another chromosomal position without sequence rearrangement. This phenomenon was frequently encountered in both mammalian and plant species and has been implicated in genome evolution and speciation. To understand the dynamic of centromeres on soybean genome, we performed the pan-centromere analysis using CENH3-ChIP-seq data from 27 soybean accessions, including 3 wild soybeans, 9 landraces, and 15 cultivars. Building upon the previous discovery of three centromere satellites in soybean, we have identified two additional centromere satellites that specifically associate with chromosome 1. These satellites reveal significant rearrangements in the centromere structures of chromosome 1 across different accessions, consequently impacting the localization of CENH3. By comparative analysis, we reported a high frequency of centromere repositioning on 14 out of 20 chromosomes. Most newly emerging centromeres formed in close proximity to the native centromeres and some newly emerging centromeres were apparently shared in distantly related accessions, suggesting their emergence is independent. Furthermore, we crossed two accessions with mismatched centromeres to investigate how centromere positions would be influenced in hybrid genetic backgrounds. We found that a significant proportion of centromeres in the S9 generation undergo changes in size and position compared to their parental counterparts. Centromeres preferred to locate at satellites to maintain a stable state, highlighting a significant role of centromere satellites in centromere organization. Taken together, these results revealed extensive centromere repositioning in soybean genome and highlighted how important centromere satellites are in constraining centromere positions and supporting centromere function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要