Class-Aware Patch Embedding Adaptation for Few-Shot Image Classification.

Fusheng Hao, Fengxiang He, Liu Liu , Fuxiang Wu,Dacheng Tao, Jun Cheng

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)(2023)

引用 1|浏览18
暂无评分
摘要
"A picture is worth a thousand words", significantly beyond mere a categorization. Accompanied by that, many patches of the image could have completely irrelevant meanings with the categorization if they were independently observed. This could significantly reduce the efficiency of a large family of few-shot learning algorithms, which have limited data and highly rely on the comparison of image patches. To address this issue, we propose a Class-aware Patch Embedding Adaptation (CPEA) method to learn "class-aware embeddings" of the image patches. The key idea of CPEA is to integrate patch embeddings with class-aware embeddings to make them class-relevant. Furthermore, we define a dense score matrix between class-relevant patch embeddings across images, based on which the degree of similarity between paired images is quantified. Visualization results show that CPEA concentrates patch embeddings by class, thus making them class-relevant. Extensive experiments on four benchmark datasets, miniImageNet, tieredImageNet, CIFAR-FS, and FC-100, indicate that our CPEA significantly outperforms the existing state-of-the-art methods. The source code is available at https://github.com/FushengHao/CPEA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络