Computational identification and clinical validation of a novel risk signature based on coagulation-related lncRNAs for predicting prognosis, immunotherapy response, and chemosensitivity in colorectal cancer patients

Frontiers in Immunology(2023)

引用 0|浏览3
暂无评分
摘要
Background Coagulation is critically involved in the tumor microenvironment, cancer progression, and prognosis assessment. Nevertheless, the roles of coagulation-related long noncoding RNAs (CRLs) in colorectal cancer (CRC) remain unclear. In this study, an integrated computational framework was constructed to develop a novel coagulation-related lncRNA signature (CRLncSig) to stratify the prognosis of CRC patients, predict response to immunotherapy and chemotherapy in CRC, and explore the potential molecular mechanism. Methods CRC samples from The Cancer Genome Atlas (TCGA) were used as the training set, while the substantial bulk or single-cell RNA transcriptomics from Gene Expression Omnibus (GEO) datasets and real-time quantitative PCR (RT-qPCR) data from CRC cell lines and paired frozen tissues were used for validation. We performed unsupervised consensus clustering of CRLs to classify patients into distinct molecular subtypes. We then used stepwise regression to establish the CRLncSig risk model, which stratified patients into high- and low-risk groups. Subsequently, diversified bioinformatics algorithms were used to explore prognosis, biological pathway alteration, immune microenvironment, immunotherapy response, and drug sensitivity across patient subgroups. In addition, weighted gene coexpression network analysis was used to construct an lncRNA-miRNA-mRNA competitive endogenous network. Expression levels of CRLncSig, immune checkpoints, and immunosuppressors were determined using RT-qPCR. Results We identified two coagulation subclusters and constructed a risk score model using CRLncSig in CRC, where the patients in cluster 2 and the low-risk group had a better prognosis. The cluster and CRLncSig were confirmed as the independent risk factors, and a CRLncSig-based nomogram exhibited a robust prognostic performance. Notably, the cluster and CRLncSig were identified as the indicators of immune cell infiltration, immunoreactivity phenotype, and immunotherapy efficiency. In addition, we identified a new endogenous network of competing CRLs with microRNA/mRNA, which will provide a foundation for future mechanistic studies of CRLs in the malignant progression of CRC. Moreover, CRLncSig strongly correlated with drug susceptibility. Conclusion We developed a reliable CRLncSig to predict the prognosis, immune landscape, immunotherapy response, and drug sensitivity in patients with CRC, which might facilitate optimizing risk stratification, guiding the applications of immunotherapy, and individualized treatments for CRC.
更多
查看译文
关键词
colorectal cancer, coagulation, long noncoding RNA, prognostic signature, tumor microenvironment, immunotherapy, chemosensitivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要