谷歌浏览器插件
订阅小程序
在清言上使用

Thermo-reversible self-assembled novel gellan gum hydrogels containing amino acid biogelators with antibacterial activity

CARBOHYDRATE POLYMERS(2024)

引用 0|浏览8
暂无评分
摘要
In recent years, hydrogels derived from natural polymers have gained considerable attention. However, lack of mechanical strength and poor stability has become major lacuna of such systems. Scientists have attempted to resolve this problem by introducing chemical cross-linkers or synthetic modifications of natural polymers. In contrast, biological cross-linkers may be more beneficial due to their cytocompatibility and non-immunogenicity. As a biogelator, amino acids (AA) may be lucrative, yet they remain untapped till date. Present study, for the first time, reports exploitation of.-Lysine, (L)-Arginine, (L)-Aspartic acid, and (L)-Glutamic acid as biogelator to fabricate novel gellan gum (GG) hydrogels through green chemistry. Furthermore, as a first instance, molecular docking was applied to gain insight into the interaction between GG and AA. As predicted through docking, physical cross-linking of these hydrogels accounted for their thermo-reversibility. Moreover, to assess the suitability of prepared hydrogel for its intended use, systematic characterization studies were performed via FTIR, Raman spectroscopy, XRD, FE-SEM, and TGA. Additionally, rheological behavior of hydrogels was investigated using variety of parameters. Interestingly, GG-AA hydrogels exhibited around 99 % antibacterial activity against multidrug-resistant bacteria. According to the findings of this study, these novel hydrogels may have immense potential in the food and biomedical sectors.
更多
查看译文
关键词
Gellan,Amino acids,Biogelators,Antibacterial,Hydrogel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要