Low-loss contacts on textured substrates for inverted perovskite solar cells.

Nature(2023)

引用 13|浏览25
暂无评分
摘要
Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, thereby minimizing interfacial recombination and improving electronic structures. We report a lab-measured power-conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65°C and 50% relative humidity following >1000 hours of maximum power point tracking under 1-sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing - achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.
更多
查看译文
关键词
perovskite solar cells,substrates,low-loss
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要