Mechanistic modeling of fatigue crack growth in asphalt fine aggregate matrix under torsional shear cyclic load

INTERNATIONAL JOURNAL OF FATIGUE(2024)

引用 1|浏览13
暂无评分
摘要
Fatigue crack growth in asphalt pavements under vehicle load may primarily occur within the asphalt fine aggregate matrix (FAM) phase of the mixture. This study aims to predict fatigue crack growth in FAM by developing a mechanistic-based fatigue crack characterization model and fatigue crack growth model under torsional shear cyclic load. Initially, a fatigue crack characterization indicator, fatigue damage density, was derived using principles of torque and dissipated strain energy equivalence. Afterwards, a fatigue crack growth model was established based on the pseudo J-integral Paris' law. Finally, the viscoelastic damage constitutive model was further constructed by coupling the fatigue crack growth model with a viscoelastic model, which was subsequently implemented in COMSOL Multiphysics. The results show that the fatigue damage density can be determined by the initial shear modulus and phase angle, as well as shear modulus and phase angle under fatigue conditions. Additionally, a logarithmic-linear correlation exists between the fatigue crack growth rate and the dissipated pseudo strain energy rate. The parameters of the fatigue crack growth model exhibit minimal variation across different shear strain levels and temperatures. Overall, the proposed numerical model can effectively simulate damaged torsional shear cyclic tests of FAM.
更多
查看译文
关键词
Fatigue crack growth,Asphalt fine aggregate matrix,Torsional shear cyclic load,Pseudo J-integral Paris' law,Viscoelastic damage constitutive model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要