First-principles calculations of the electronic structure and mechanical properties of non-doped and Cr3+-Doped K2LiAlF6 under pressure

JOURNAL OF LUMINESCENCE(2024)

引用 0|浏览12
暂无评分
摘要
We report on the results of the first principles calculations based on density functional theory (DFT) of the electronic structure and mechanical properties of K2LiAlF6, both non-doped and doped with Cr3+ ions. The densities of states of K2LiAlF6 and the K2LiAlF6:Cr3+ phosphor as well as the crystal-field strength 10Dq, the Cr3+ 2E -> 4A2 emission energy, elastic constants, bulk and shear moduli, sound velocities and Debye temperature as functions of hydrostatic pressure ranging from 0 up to 40 GPa were calculated. The present DFT calculations indicate that, the band gap of non-doped K2LiAlF6 increases quadratically with increasing pressure. Further, the crystal field strength 10Dq and the 2E -> 4A2 emission energy, the Debye temperature, sound velocities and shear moduli of Cr-doped K2LiAlF6 increase with increasing pressure, while the 2E -> 4A2 emission energy becomes red-shifted, which indicates potential applicability of the studied system for pressure sensing. Such calculations for the title system were performed for the first time; the obtained results provide a firm basis for a deeper understanding of physical properties of both neat and doped functional materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要