谷歌浏览器插件
订阅小程序
在清言上使用

Thermal-porosity characterization data of additively manufactured Ti-6Al-4V thin-walled structure via laser engineered net shaping

DATA IN BRIEF(2023)

引用 0|浏览7
暂无评分
摘要
In-process thermal melt pool images and post-fabrication porosity labels are acquired for Ti-6Al-4V thin-walled structure fabricated with OPTOMEC Laser Engineered Net Shaping (LENS (TM)) 750 system. The data is collected for nondestructive thermal characterization of direct laser deposition (DLD) build. More specifically, a Stratonics dual-wavelength pyrometer captures a top-down view of the melt pool of the deposition heat-affected zone (HAZ), which is above 1000degree celsius, and Nikon X-Ray Computed Tomography (XCT) XT H225 captures internal porosity reflective of lack of fusion during the fabrication process. The pyrometer images provided in Comma Separated Values (CSV) format are cropped to center the melt pool to temperatures above 1000degree celsius, indicative of the shape and distribution of temperature values. Melt pool coordinates are determined using pyrometer specifications and thin wall build parameters. XCT porosity labels of sizes between 0.05 mm to 1.00 mm are registered within 0.5 mm of the melt pool image coordinate. An XCT porosity-labeled table provided in the Excel spreadsheet format contains time stamps, melt pool coordinates, melt pool eccentricity, peak temperature, peak temperature coordinates, pore size, and pore label. Thermal-porosity data utilization aids in generating data-driven quality control models for manufacturing parts anomaly detection.
更多
查看译文
关键词
Additive manufacturing,Laser engineering net shaping,Melt pool,Process monitoring,Pyrometer thermal imaging,X-ray computed tomography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要