Graphene-In 2 Se 3 van der Waals Heterojunction Neuristor for Optical In-Memory Bimodal Operation.

ACS nano(2023)

引用 0|浏览4
暂无评分
摘要
Functional diversification at the single-device level has become essential for emerging optical neural network (ONN) development. Stable ferroelectricity harnessed with strong light sensitivity in α-InSe holds great potential for developing ultrathin neuromorphic devices. Herein, we demonstrated an all-2D van der Waals heterostructure-based programmable synaptic field effect transistor (FET) utilizing a ferroelectric α-InSe nanosheet and monolayer graphene. The devices exhibited reconfigurable, multilevel nonvolatile memory (NVM) states, which can be successively modulated by multiple dual-mode (optical and electrical) stimuli and thereby used to realize energy-efficient, heterosynaptic functionalities in a biorealistic fashion. Furthermore, under light illumination, the prototypical device can toggle between volatile (photodetector) and nonvolatile optical random-access memory (ORAM) logic operation, depending upon the ferroelectric-dipole induced band adjustment. Finally, plasticity modulation from short-term to prominent long-term characteristics over a wide dynamic range was demonstrated. The inherent operation mechanism owing to the switchable polarization-induced electronic band alignment and bidirectional barrier height modulation at the heterointerface was revealed by conjugated electronic transport and Kelvin-probe force microscopy (KPFM) measurements. Overall, robust (opto)electronic weight controllability for integrated in-sensor and in-memory logic processors and multibit ORAM systems was readily accomplished by the synergistic ferrophotonic heterostructure properties. Our presented results facilitate the technological implementation of versatile all-2D heterosynapses for next-generation perception, optoelectronic logic systems, and Internet-of-Things (IoT) entities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要