Solvent-Free, One-Pot Synthesis of Tungsten Semi-Carbide for Stable and Self-Hydrating Short-Side-Chain-Based Polymer Electrolyte Membrane for Low-Humidity Hydrogen Fuel Cells

Maniprakundil Neeshma,Santoshkumar D. Bhat

ACS applied materials & interfaces(2023)

引用 0|浏览0
暂无评分
摘要
Polymer electrolyte membranes (PEMs) that promote fast and selective ionic transport at low relative humidity (RH) are of high demand for energy conversion devices, particularly in hydrogen fuel cells. Herein, we report a facile and solvent free synthesis of tungsten semi-carbide (W2C@NC) and its incorporation onto short side chain (SSC)-based membrane matrix to facilitate water holding and water-assisted humidification generated by the reaction of crossover gas molecules. In the present study, the influence of W2C@NC on the membrane matrix is widely investigated through its microstructure, physicochemical properties, proton conductivity, and fuel cell performance. It is demonstrated that addition of W2C@NC facilitates membrane hydration via in situ water generation, thus preventing fuel crossover across the membrane. In addition, W2C@NC contributes toward low-humidity polymer electrolyte fuel cell (PEFC) operation. The study revealed minimal differences in cell performance between fully humidified and low RH conditions for composite membranes, with a noteworthy improvement in performance observed even under completely dry conditions compared to pristine membranes. Apart from good thermal and mechanical stabilities, 81% of initial OCV and 72.86% of current density was retained even after 100 h of accelerated stress test (AST), which opens further perspectives for development of perfluoro sulfonic acid (PFSA) based low RH proton exchange membrane fuel cells (PEMFCs).
更多
查看译文
关键词
polymer electrolyte membrane,hydrogen fuel,solvent-free,one-pot,semi-carbide,self-hydrating,short-side-chain-based,low-humidity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要