谷歌浏览器插件
订阅小程序
在清言上使用

Fe-Fe3N Composite Nitrogen-Doped Carbon Framework: Multi-dimensional Cross-Linked Structure Boosting Performance for the Oxygen Reduction Reaction Electrocatalysis and Zinc-Air Batteries

Applied surface science(2023)

引用 0|浏览17
暂无评分
摘要
Taking into consideration the sluggish kinetics of the oxygen reduction reaction (ORR) and the distinct three-phase environment of the electrode, it is crucial to optimize the surface structure of the electrocatalyst. This study employs a sol-gel approach to synthesize a Fe-Fe3N composite three-dimensional nitrogen-doped carbon framework (Fe-Fe3N/3DNC) and utilize it as the electrocatalyst for a zinc-air battery. The material possesses a multi-dimensional cross-linking frame structure comprised of one-dimensional and two-dimensional crosslinks, which effectively reduce the diffusion mean-free path of oxygen. Moreover, the iron-nitrogen site and nitrogen -rich carbon substrate both exhibit exceptional electrocatalytic activity for ORR. Consequently, a conventional liquid zinc-air battery utilizing this material as the air cathode catalyst exhibits a maximum power density of 242.8 mW cm-2, surpassing that of commercial Pt/C. Additionally, DFT calculations further confirm the crucial enhancing influence of Fe3N in the Fe-Fe3N/3DNC composite on ORR. This research provides valuable insights for the development of ORR electrocatalysts with outstanding efficiency.
更多
查看译文
关键词
Fe-N-C,Multi-dimensional,Cross-linking structure,ORR,Zinc-air battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要