Holistic and dynamic mathematical model for the assessment of offshore green hydrogen generation and electrolyser design optimisation

ENERGY CONVERSION AND MANAGEMENT(2023)

引用 0|浏览2
暂无评分
摘要
The decarbonisation of the energy system will imply the use of unexplored locations and technologies. In this sense, generation of green H2 in far-offshore farms may be an alternative. However, the offshore green H2 generation potential is commonly assessed by using constant conversion rates. This paper presents a holistic and dynamic mathematical model coupling the aero-hydrodynamic model with the polymer electrolyte membrane (PEM) electrolyser model. The model enables a more accurate and comprehensive analysis of the realistic H2 generation capacity considering the power-to-gas system efficiency. First, the model of the PEM electrolyser is validated and a wide sensitivity analysis is computed in order to report the impact of the operational conditions. Then, H2 production is assessed focused on (i) the stack performance and (ii) the system performance. The system performance results in a efficiency reduction of up to 10% in the case of FOWTs and up to 70% in WECs due to the fluctuations of the power signal. Hence, results highlight the need for a holistic system assessment instead of focusing on the stack. Finally, transient effects are considered, concluding that in highly fluctuating applications, such as renewables, external heat sources may improve the performance of the system.
更多
查看译文
关键词
Offshore renewable energies,Green hydrogen,Dynamic mathematical modelling,PEM electrolysis,Wave energy,Offshore wind
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要