Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques

Molecules(2023)

引用 0|浏览3
暂无评分
摘要
Lately, the essential oils industry has been one of the most expanding markets globally. However, the byproducts generated after the distillation of aromatic plants and their transformation to novel high-added value products consist of a major up-to-date challenge. Thus, the scope of the current study is the optimization of ultrasound-assisted extraction (UAE) for the recovery of phenolic compounds from rose (Rosa damascena) post-distillation side streams using Box-Behnken design. In particular, the highest total phenolic content (TPC) was achieved at 71% v/v ethanol-water solution, at 25 min, 40 mL/g dry sample and 53% ultrasound power, while ethanol content and extraction time were the most crucial factors (p-value <= 0.05) for UAE. Both solid (RSB) and liquid (LSB) rose side streams exhibited significant antiradical and antioxidant activities. The interpretation of attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra confirmed the presence of compounds with properties such as phenolic compounds, phenolic amide derivatives, and alcohols in the extracts. Moreover, the flavonoids naringenin, quercetin, and kaempferol were the major phenolic compounds, identified in the extracts by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS), followed by gallic, protocatechuic, p-hydroxybenzoic, and rosmarinic acids. Furthermore, the LC-MS/MS results pinpointed the effect of factors other than the extraction conditions (harvesting parameters, climatic conditions, plant growth stage, etc.) on the phenolic fingerprint of RSB extracts. Therefore, RSB extracts emerge as a promising alternative antioxidant agent in food products.
更多
查看译文
关键词
rose distillation side streams,phenolic compounds,spectrophotometric assays,ultrasound-assisted,high-throughput
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要