Reinforced concrete bridge damage detection using arithmetic optimization algorithm with deep feature fusion

AIMS MATHEMATICS(2023)

引用 0|浏览3
暂无评分
摘要
Inspection of Reinforced Concrete (RC) bridges is critical in order to ensure its safety and conduct essential maintenance works. Earlier defect detection is vital to maintain the stability of the concrete bridges. The current bridge maintenance protocols rely mainly upon manual visual inspection, which is subjective, unreliable and labour-intensive one. On the contrary, computer vision technique, based on deep learning methods, is regarded as the latest technique for structural damage detection due to its end-to-end training without the need for feature engineering. The classification process assists the authorities and engineers in understanding the safety level of the bridge, thus making informed decisions regarding rehabilitation or replacement, and prioritising the repair and maintenance efforts. In this background, the current study develops an RC Bridge Damage Detection using an Arithmetic Optimization Algorithm with a Deep Feature Fusion (RCBDD-AOADFF) method. The purpose of the proposed RCBDD-AOADFF technique is to identify and classify different kinds of defects in RC bridges. In the presented RCBDD-AOADFF technique, the feature fusion process is performed using the Darknet-19 and Nasnet-Mobile models. For damage classification process, the attention-based Long Short-Term Memory (ALSTM) model is used. To enhance the classification results of the ALSTM model, the AOA is applied for the hyperparameter selection process. The performance of the RCBDD-AOADFF method was validated using the RC bridge damage dataset. The extensive analysis outcomes revealed the potentials of the RCBDD-AOADFF technique on RC bridge damage detection process.
更多
查看译文
关键词
sustainability,RC bridge,damage detection,arithmetic optimization algorithm,feature fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要